Abstract

Radon exhaled from building material surfaces is an important source of indoor radon. Yangjiang, located in the southern part of mainland China, is well-known as a high background radiation area (HBRA). Rather, high levels of radon and thoron concentration have been observed in adobe and brick houses. Reducing the indoor radon concentration remains an important issue in the high background radiation areas of China and the world. Generally, the walls of Chinese dwellings are solid. In this paper, a simple one-dimensional model for predicting the radon diffusion in a cavity wall is proposed, and an analysis formula describing the radon exhalation rate from cavity wall surfaces is presented. The influence on the radon exhalation rate due to leakage through structural joints and building material cracks is analyzed. The simulation results indicate that the radon exhalation rate from a cavity wall surface is far lower than that from a solid wall. The structure of cavity walls themselves is therefore useful as a mechanism for reducing the indoor radon in high background radiation areas across the world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call