Abstract

Abstract Energy simulation, the virtual representation and reproduction of energy processes for an entire building or a specific space, could assist building professionals with identifying relatively optimal energy conservation measures (ECMs). A review of current work revealed that methods for achieving simultaneous high accuracies in different levels of simulations, such as building level and zone level, have not been systematically explored, especially when there are several zones and multiple HVAC units in a building. Therefore, the objective of this paper is to introduce and validate a novel framework that can calibrate a model with high accuracies at multiple levels. In order to evaluate the performance of the calibration framework, we simulated HVAC-related energy consumption at the building level, at the ECM level and at the zone level. The simulation results were compared with the measured HVAC-related energy consumption. Our findings showed that MBE and CV (RMSE) were below 8.5% and 13.5%, respectively, for all three levels of energy simulation, demonstrating that the proposed framework could accurately simulate the building energy process at multiple levels. In addition, in order to estimate the potential energy efficiency improvements when different ECMs are implemented, the model has to be robust to the changes resulting from the building being operated under different control strategies. Mixed energy ground truths from two ECMs were used to calibrate the energy model. The results demonstrated that the model performed consistently well for both ECMs. Specific contributions of the study presented in this paper are the introduction of a novel calibration framework for multi-level simulation calibration, and improvements to the robustness of the calibrated model for different ECMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.