Abstract

To build model-based systems capable of emulating the scientist's or engineer's way of reasoning about a given physical domain requires methods for automating the formulation or selection of a model which adequately captures the knowledge needed for solving a specific problem. To find and exploit such models requires the use and integration of different kinds of knowledge, formalisms and methods. This paper describes a system which aims at reasoning automatically about visco-elastic materials from a mechanical point of view. It integrates both domain-specific and domain-independent knowledge in order to classify and analyse the mechanical behaviour of materials. The classification task is based on qualitative knowledge, whereas the analysis of a material is performed at a quantitative level and is based on numerical simulation. The key ideas of the work are to automatically generate a library of models of ideal materials and their corresponding qualitative responses to standard experiments; to classify an actual material by selecting from within the library a class of models whose simulated qualitative behaviours towards standard loads match the observed behaviours; to identify a quantitative model of the material, and then to analyse the material by simulating its behaviour on any load. Each model in the library is automatically generated in two different forms; at the lowest level, as a symbolic description and, at a mathematical level, as an ordinary differential equation. This paper mainly concentrates on the methods and algorithms of model generation and qualitative simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.