Abstract

Due to variables like wellbore deviation variation and flow rate, the local flow velocity in the output wellbore of horizontal shale oil wells varied significantly at various points in the wellbore cross-section, making it challenging to calculate the total single-layer production with accuracy. The oil–water two-phase flow rate calculation techniques for horizontal wells developed based on particular flow patterns and array spinners had excellent applicability in their respective niches but suffered from poor generalizability and demanding experience levels for logging interpreters. In this study, we employed five spinners in a triangular walled array instrument to create the multi-decision tree after figuring out how many leaf nodes there were and examining the defining characteristics of the observed values gathered under various experimental setups. The construction of the entire oil–water two-phase flow prediction model was made possible when the random forest regression approach was used with it. The total oil–water flow rate at each perforated layer was predicted using the model in sample wells, and the mean square error with the third party’s interpretation conclusion was 1.42, indicating that the model had an excellent application effect. The approach, which offered a new interpretation method for calculating the oil–water two-phase flow rate of horizontal wells based on multi-location local flow rate, required less interpretation knowledge from the interpreter and had a stronger generalization capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.