Abstract

A technique is proposed for the noninvasive quantification of regurgitant flows under confined and impinging conditions. Its use requires only the knowledge of the jet orifice velocity, receiving chamber diameter, orifice-to-end wall distance and any downstream jet centerline velocity at a known distance from the orifice. The technique is based on dimensional analysis and provides a prediction of peak regurgitant flow rates. To validate the technique, known physiologic pulsatile flows were pumped through 2- and 4-mm circular orifices at 70 to 150 beats/min, into two diffrrent receiving chambers of 51 and 88 mm in diameter. At each heart rate, the peak orifice velocity was varied from 2 to 5 m/s, and the orifice-to-end wall distance was varied from 30 to 93 mm. Centerline velocities were recorded by pulsed Doppler ultrasound and averaged over multiple beats. A dimensional analysis of the parameters of the study provided an equation relating normalized centerline velocity to orifice-to-end wall distance, chamber diameter and downstream location. Statistical modeling of the experimental data was performed to compute the constants involved in this equation. The estimated ( i.e., predicted by the technique) peak regurgitant flow rates were found to fall within 10% of the actual values, when centerline velocities were measured over a range of centerline distances from six orifice diameters to 85% of the chamber length. Therefore, the proposed technique provides, for the first time, a quantitative method for calculating valvular regurgitant flow rates under confined and impinging conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.