Abstract
We propose in this paper a novel model-based gait recognition method, PoseGait. Gait recognition is a challenging and attractive task in biometrics. Early approaches to gait recognition were mainly appearance-based. The appearance-based features are usually extracted from human body silhouettes, which are easy to compute and have shown to be efficient for recognition tasks. Nevertheless silhouettes shape is not invariant to changes in clothing, and can be subject to drastic variations, due to illumination changes or other external factors. An alternative to silhouette-based features are model-based features. However, they are very challenging to acquire especially for low image resolution. In contrast to previous approaches, our model PoseGait exploits human 3D pose estimated from images by Convolutional Neural Network as the input feature for gait recognition. The 3D pose, defined by the 3D coordinates of joints of the human body, is invariant to view changes and other external factors of variation. We design spatio-temporal features from the 3D pose to improve the recognition rate. Our method is evaluated on two large datasets, CASIA B and CASIA E. The experimental results show that the proposed method can achieve state-of-the-art performance and is robust to view and clothing variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.