Abstract
This paper presents the development and approach of a model-based fault identification and accommodation framework applied to sampled-data controlled distributed energy resources subject to control actuator faults. The main objective of the proposed approach is to handle faults that degrade stability as well as performance, while remaining robust to false alarms. The proposed method allows for dual fault detection and estimation, through the use of an embedded system model that minimizes the residual between the estimated and sampled states at each sampling period by adjusting a fault parameter in the embedded model over a past horizon. The resulting fault parameter estimate is then used by the control system to find an optimal fault accommodation strategy by minimizing a predefined performance metric whilst ensuring closed-loop stability. The developed fault accommodation framework is then applied to a simulated model of a solid oxide fuel cell subject to both stability and performance degrading faults in the control actuators. A discussion of some of the practical implementation issues associated with the developed framework is also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.