Abstract

The American Society for Heating, Refrigeration, and Air Conditioning Engineers (ASHARE) prescribes fixed ventilation rates for the operation of heating, ventilation, and air conditioning (HVAC) systems, which is sub-optimal in terms of controlling indoor air pollutants and energy consumption. This paper relies on a physics-based model of a residential house to predict the concentrations of indoor pollutants such as ozone, formaldehyde (HCHO), and particulate matter (PM) as function of time, outdoor conditions, and indoor emissions. The model captures real-world scenarios such as pollutants entering the house from ambient air through an air handling unit (AHU) and pollutants emitted in the house. A dynamic optimization problem is then formulated and solved to calculate the optimal ventilation rate at each time instant, that minimizes the total energy consumption, while maintaining the indoor pollutant concentrations below or as close as possible to their respective acceptable thresholds. For the considered example day, operation under optimized conditions reduces the peak pollutant concentration by 31%, time of exposure to undesirable concentrations by 48%, and energy consumption of the AHU by 17.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.