Abstract
Usually, the clustering process is the first step in several data analyses. Clustering allows identify patterns we did not note before and helps raise new hypotheses. However, one challenge when analyzing empirical data is the presence of covariates, which may mask the obtained clustering structure. For example, suppose we are interested in clustering a set of individuals into controls and cancer patients. A clustering algorithm could group subjects into young and elderly in this case. It may happen because the age at diagnosis is associated with cancer. Thus, we developed CEM-Co, a model-based clustering algorithm that removes/minimizes undesirable covariates' effects during the clustering process. We applied CEM-Co on a gene expression dataset composed of 129 stage I non-small cell lung cancer patients. As a result, we identified a subgroup with a poorer prognosis, while standard clustering algorithms failed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of bioinformatics and computational biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.