Abstract
ABSTRACT A typical oil spill recovery vessel has been historically outfitted with an oil spill detection (OSD) radar. During an oil spill recovery operation, there is a dedicated operator who is responsible for interpreting information from the radar image. Industry developments over the last several years now require that an OSD radar automatically detect and track an oil spill. There are two primary needs driving this development. The first is that OSD systems and operations are becoming more sophisticated; automatic OSD aids for a more efficient oil spill operation where an operator's attention may be directed to a potential spill. The automatic OSD also aids a multi-sensor system; one such example is where an OSD radar is used to steer an IR camera to a candidate spill for more detailed evaluation or validation. The other primary driver for automatic OSD is for monitoring systems, which serve for early warning. Monitoring systems may be found along coastal installations or oil platforms. The automatic spill detection functionality of an OSD system may be implemented in different levels of sophistication. Perhaps the simplest configuration is one that uses fixed thresholds relative to the image for alarming whether a region in a radar image is a spill or not. The benefit of simple threshold detector is that it is easy to implement in software. The weakness is that it is prone to both lower overall detection rate and high false alarm rate. A more robust automatic spill detection method is one that treats it as an image-processing problem. The paper here presents a model based OSD. Generation of confidence maps is central to the method and provides an indication of the likelihood of oil. Inputs to the confidence maps come from multiple sources, several of which are based on uniquely constructed models. Among these is a histogram comparator, which scans a radar image and compares the data to reference models from real oil spills. A discussion of the methods used focuses on (a) the necessary steps prior to the confidence map construction, (b) how the confidence maps are layered with inputs, (c) how the information in the confidence maps is transitioned into the detection of oil, (d) and finally alarming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.