Abstract
Context. Lightweight model and effective training algorithm of on-board object detection system for a compact drone are developed. The object of research is the process of small object detection on aerial images under computational resource constraint and uncertainty caused by small amount of labeled training data. The subject of the research are the model and training algorithm for detecting small objects on aerial imagery. Objective. Goal of the research is developing efficient model and training algorithm of object detection system for a compact aerial drone under conditions of restricted computing resources and the limited volume of the labeled training set. Methods. The four-stage training algorithm of the object detector is proposed. At the first stage, selecting the type of deep convolutional neural network and the number of low-level layers that is pre-trained on the ImageNet dataset for reusing takes place. The second stage involves unsupervised training of high-level convolutional sparse coding layers using modification of growing neural gas to automatically determine the required number of neurons and provide optimal distributions of the neurons over the data. Its application makes it possible to utilize the unlabeled training datasets for the adaptation of the high-level feature description to the domain application area. At the third stage, there are reduction of output feture map using principan component analysis and building of decision rules. In this case, output feature map is formed by concatenation of feature maps from different level of deep network using upscaling upper maps to uniform shape for each channel. This approach provides more contextual information for efficient recognition of small objects on aerial images. In order to build classifier of output feature map pixels is proposed to use boosted information-extreme learning. Besides that, the extreme learning machine is used to build of regression model for predict bounding box of detected object. Last stage involves fine-tuning of high-level layers of deep network using simulated annealing metaheuristic algorithm in order to approximating the global optimum of complex criterion of training efficiency of detection model. Results. The results obtained on open datasets testify to the suitability of the model and training algorithm for practical usage. The proposed training algorithm utilize 500 unlabeled and 200 labeled training samples to provide 96% correctly detection of objects on the images of the test dataset. Conclusions. Scientific novelty of the paper is a new model and training algorithm for object detection, which enable to achieve high confidence of recognition of small objects on aerial images under computational resource constraint and limited volume of the labeled training set. Practical significance of the paper results consists in the developed model and training algorithm made it possible to reduce requirements for size of labeled training set and computation resources of on-board detection system of aerial drone in training and inference modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.