Abstract
This study tackles the significant challenge of generating low-cost intrusion detection datasets for Internet of Things (IoT) camera devices, particularly for financially limited organizations. Traditional datasets often depend on costly cameras, posing accessibility issues. Addressing this, a new dataset was developed, tailored for low-cost IoT devices, focusing on essential features. The research employed an Entry/Exit IoT Network at CKT-UTAS, Navrongo, a Ghanaian University, showcasing a feasible model for similar organizations. The study gathered location and other vital features from low-cost cameras and a standard dataset. Using the XGBoost machine learning algorithm, the effectiveness of this approach for cybersecurity enhancement was demonstrated. The implementation included a model-agnostic eXplainable AI (XAI) technique, employing Shapley Additive Explanations (SHAP) values to interpret the XGBoost model's predictions. This highlighted the significance of cost-effective features like Flow Duration, Total Forward Packets, and Total Length Forward Packet, in addition to location data. These features were crucial for intrusion detection using the new IoT dataset. Training a deep-learning model with only these features maintained comparable accuracy to using the full dataset, validating the practicality and efficiency of the approach in real-world scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Information Security and Cybercrimes Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.