Abstract

Lower-limb powered prostheses can provide users with volitional control of ambulation. To accomplish this goal, they require a sensing modality that reliably interprets user intention to move. Surface electromyography (EMG) has been previously proposed to measure muscle excitation and provide volitional control to upper- and lower-limb powered prosthesis users. Unfortunately, EMG suffers from a low signal to noise ratio and crosstalk between neighboring muscles, often limiting the performance of EMG-based controllers. Ultrasound has been shown to have better resolution and specificity than surface EMG. However, this technology has yet to be integrated into lower-limb prostheses. Here we show that A-mode ultrasound sensing can reliably predict the prosthesis walking kinematics of individuals with a transfemoral amputation. Ultrasound features from the residual limb of 9 transfemoral amputee subjects were recorded with A-mode ultrasound during walking with their passive prosthesis. The ultrasound features were mapped to joint kinematics through a regression neural network. Testing of the trained model against untrained kinematics from an altered walking speed show accurate predictions of knee position, knee velocity, ankle position, and ankle velocity, with a normalized RMSE of 9.0 ± 3.1%, 7.3 ± 1.6%, 8.3 ± 2.3%, and 10.0 ± 2.5% respectively. This ultrasound-based prediction suggests that A-mode ultrasound is a viable sensing technology for recognizing user intent. This study is the first necessary step towards implementation of volitional prosthesis controller based on A-mode ultrasound for individuals with transfemoral amputation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.