Abstract

The complex, multidimensional energy landscape of biomolecules makes the extraction of suitable, nonintuitive collective variables (CVs) that describe their conformational transitions challenging. At present, dimensionality reduction approaches and machine learning (ML) schemes are employed to obtain CVs from molecular dynamics (MD)/Monte Carlo (MC) trajectories or structural databanks for biomolecules. However, minimum sampling conditions to generate reliable CVs that accurately describe the underlying energy landscape remain unclear. Here, we address this issue by developing a Mode evolution Metric (MeM) to extract CVs that can pinpoint new states and describe local transitions in the vicinity of a reference minimum from nonequilibrated MD/MC trajectories. We present a general mathematical formulation of MeM for both statistical dimensionality reduction and machine learning approaches. Application of MeM to MC trajectories of model potential energy landscapes and MD trajectories of solvated alanine dipeptide reveals that the principal components which locate new states in the vicinity of a reference minimum emerge well before the trajectories locally equilibrate between the associated states. Finally, we demonstrate a possible application of MeM in designing efficient biased sampling schemes to construct accurate energy landscape slices that link transitions between states. MeM can help speed up the search for new minima around a biomolecular conformational state and enable the accurate estimation of thermodynamics for states lying on the energy landscape and the description of associated transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.