Abstract
The mathematical modeling of failure mechanisms in solid materials and structures is a long standing problem. In recent years, peridynamics has been used as a theoretical basis for numerical studies of fracture initiation, evolution and propagation. In order to investigate damage phenomena numerically, suitable material and damage models have to be implemented in an efficient numerical framework. This framework should be highly parallelizable in order to cope with the computational effort due to the high spatial and, depending on the problem, temporal resolution required for high accuracy. The open-source peridynamic framework Peridigm offers a computational platform upon which new developments of the peridynamic theory can be implemented. Today, isotropic material models and a very simple damage model are implemented in Peridigm. This paper proposes three energy-based damage criteria. The implementation approach as well as the extension of Peridigm with these physically motivated models is described. The original criterion of Foster et al. is adapted for ordinary state based material. The other two criteria utilize the decomposition of peridynamic states in isotropic and deviatoric parts to account for the failure-mode dependency. The original criterion is verified by the numerical simulation of two mechanical problems. At first, a virtual double cantilever beam (DCB) experiment is performed to determine the energy release rate. This value is the fundamental material property required for the proposed criteria. Additionally, the DCB problem is then used to investigate the convergence of the numerical scheme implemented in Peridigm. In a second step, a model of a plate with a cylindrical hole under tensile loading is compared with an extended finite element method solution. Results of both numerical solutions are in good agreement. Finally, a fiber reinforced micro structure model is used to analyze the effect of the different criteria to the damage initiation and crack propagation under a more complex loading condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.