Abstract
I propose a comprehensive account of negation as a modal operator, vindicating a moderate logical pluralism. Negation is taken as a quantifier on worlds, restricted by an accessibility relation encoding the basic concept of compatibility. This latter captures the core meaning of the operator. While some candidate negations are then ruled out as violating plausible constraints on compatibility, different specifications of the notion of world support different logical conducts for (the admissible) negations. The approach unifies in a philosophically motivated picture the following results: nothing can be called a negation properly if it does not satisfy (Minimal) Contraposition and Double Negation Introduction; the pair consisting of two split or Galois negations encodes a distinction without a difference; some paraconsistent negations also fail to count as real negations, but others may; intuitionistic negation qualifies as real negation, and classical Boolean negation does as well, to the extent that constructivist and paraconsistent doubts on it do not turn on the basic concept of compatibility but rather on the interpretation of worlds
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.