Abstract

In the three-compartment model of lung ventilation-perfusion heterogeneity (VA/Q scatter), both Bohr dead space and shunt equations require values for central "ideal" compartment O2 and CO2 partial pressures. However, the ideal alveolar gas equation most accurately calculates mixed (ideal and alveolar dead space) PAO2 . A novel "modal" definition has been validated for ideal alveolar CO2 partial pressure, at the VA/Q ratio in a lung distribution where CO2 elimination is maximal. A multicompartment computer model of physiological, lognormal distributions of VA and Q was used to identify modal "ideal" PAO2 , and find a modification of the alveolar gas equation to estimate it across a wide range of severity of VA/Q heterogeneity and FIO2 . This was then validated in vivo using data from a study of 36 anesthetized, ventilated patients with FIO2 0.35-80. Substitution in the alveolar gas equation of respiratory exchange ratio R with achieved excellent agreement (r2 = 0.999) between the calculated ideal PAO2 and the alveolar-capillary Pc'O2 at the modal VO2 point ("modal" Pc'O2 ), across a range of log standard deviation of VA 0.25-1.75, true shunt 0%-20%, overall VA/Q 0.4-1.6, and FIO2 0.18-1.0, where the modeled PaO2 was over 50 mm Hg. Modal ideal PAO2 can be reliably estimated using routine blood gas measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.