Abstract

This study evaluated the three vibration characteristics, namely, natural frequency, damping ratio, and natural mode, together with maximum displacement of a two-implant-supported overdenture (IOD) at different locator attachment positions using experimental modal analysis (EMA). Edentulous mandibular models with a gingival thickness of 1 mm or 3 mm were prepared, into which dental implants were placed using a fully guided surgical template designed with simulation software, the locator abutments were fastened, and the IODs were then fabricated. The implant positions were bilaterally marked at the lateral incisor, first premolar, and first molar regions. EMA was performed by hammering the test structures to measure the impulse response and obtain the vibration characteristics (n = 5). The Kruskal–Wallis test was performed for natural frequency and maximum displacement, and the Games-Howell test for damping ratio. The significance level was set at α = 0.05. The study indicated that the gingival thickness had a significant effect on the vibration characteristics. Moreover, the natural frequency and damping ratio results showed that the vibration subsided faster when the attachment was placed on the molar implants in the thick gingival model. Furthermore, according to the effect of lateral force on IODs, the difference in maximum displacement between the anterior and posterior regions of the IOD was smaller when the attachments were designed on the pair of lateral incisors. Thus, within the limits of this experiment, our results suggested that two anterior implant-supported IODs are preferable treatment designs in terms of vibration engineering, especially when the gingiva is thick; the molar attachment design could be considered for thin gingival conditions. The differences in gingival thickness and abutment position affected the vibration characteristics of the IOD. Further in vivo studies would be necessary to validate the implant positions and their IOD designs for the mandibular edentulous shapes and the occlusal relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call