Abstract
At micro- and nanoscales, the gas pressure load is generally simulated by the thermal motion of gas molecules. However, the pressure load can hardly be produced or controlled accurately, because the effects of the wall thickness and the atomic weight of the gas molecules are not taken into account. In this paper, we propose a universal gas molecules model for simulating the pressure load accurately at micro- and nanoscales, named mock gas molecules model. Six scale-independent parameters are established in this model, thus the model is applicable at both micro- and nanoscales. To present the validity and accuracy of the model, the proposed model is applied into the coarse-grained molecular dynamics simulation of graphene blister, and the simulation results agree well with experimental observations from the graphene blister test, indicating that the model can produce and control the pressure load accurately. Furthermore, the model can be easily implemented into many simulators for problems about the solid–gas interaction, especially for membrane gas systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.