Abstract

During channel modeling for high-mobility channels, such as high-speed train (HST) channels, the velocity of the mobile radio station is assumed to be constant. However, this might not be realistic due to the dynamic movement of the train along the track. Therefore, in this paper, an enhanced Gauss-Markov mobility model with a 3D non-stationary geometry based stochastic model (GBSM) for HST in MIMO Wireless Channels is proposed. The non-isotropic scatterers within a cluster are assumed to be around the sphere in which the mobile relay station (MRS) is located. The multi-path components (MPCs) are modeled with varying velocities, whereas the mobility model is a function of time. The MPCs are represented in a death-birth cluster using the Markov process. Furthermore, the channel statistics, i.e., the space-time correlation function, the root-mean-square Doppler shift, and the quasi-stationary interval, are derived from the non-stationary model. The model shows how the quasi-stationary time increases from 0.21 to 0.451 s with a decreasing acceleration of 0.6 to 0.2 m/s2 of the HST. In addition, the impact of the distribution of the angles on the channel statistics is presented. Finally, the simulated results are compared with the measured results. Therefore, there is a close relationship between the proposed model and the measured results, and the model can be used to characterize the channel's properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.