Abstract

This paper presents a novel approach for providing a mobile battery swapping service for electric vehicles (EVs) that is provided by a mobile battery swapping van. This battery swapping van can carry many fully charged batteries and drive up to an EV to swap a battery within a few minutes. First, a reasonable EV battery swapping architecture based on a battery swapping van is established in this paper. The function and role of each participant and the relationships between each participant are determined, especially their changes compared with the battery charging service. Second, the battery swapping service is described, including the service request priority and service request queuing model. To provide the battery swapping service efficiently and effectively, the battery swapping service request scheduling is analyzed well, and a minimum waiting time based on priority and satisfaction scheduling strategy (MWT-PS) is proposed. Finally, the battery swapping service is simulated, and the performance of MWT-PS is evaluated in simulation scenarios. The simulation results show that this novel approach can be used as a reference for a future system that provides reasonable and satisfying battery swapping service for EVs.

Highlights

  • In recent years, due to the increasingly significant shortage of non-renewable resources, such as oil and coal, excessive consumption, and the consequent environment pollution, electric vehicles (EVs) have gradually drawn people’s attention and become favored as a type of clean energy vehicle [1]

  • EV battery swapping architecture based on a battery swapping van For the effective and efficient operation of an EV battery swapping service based on a battery swapping van, a reasonable EV battery swapping architecture needs to solve the specific process of battery production, charging, transportation, storage, swapping, communication and others and identify the specific functions of each participant of the entire EV battery swapping system and the relationship between them

  • This paper presents a novel approach for providing a battery swapping service for EVs, which is provided by mobile battery swapping vans

Read more

Summary

Introduction

Due to the increasingly significant shortage of non-renewable resources, such as oil and coal, excessive consumption, and the consequent environment pollution, electric vehicles (EVs) have gradually drawn people’s attention and become favored as a type of clean energy vehicle [1]. The battery swapping location can be generated based on the specific battery swapping service scheduling strategy or the driver’s actual requirements. EV battery swapping architecture based on a battery swapping van For the effective and efficient operation of an EV battery swapping service based on a battery swapping van, a reasonable EV battery swapping architecture needs to solve the specific process of battery production, charging, transportation, storage, swapping, communication and others and identify the specific functions of each participant of the entire EV battery swapping system and the relationship between them. To improve the efficiency and effectiveness of battery swapping service, battery swapping requests need to be distinguished and scheduled based on the advanced management system.

Related Work
Battery Swapping Van
Battery Swapping Station
Battery Swapping Service Mobile APP
Battery Swapping Service Management System
Battery Charging Factory
EV and Battery Manufacturers
Profit Mode
Cost Analysis
Funds and Policies
Environmental Impact of Battery Swapping Vans
Battery Swapping Service
Service Request Priority
Service Request Queuing Model
Request Departure
Request Queuing Model Adjustment
Waiting Time Thresholds for EV Users’ Satisfaction
Scheduling Principle
Scheduling Strategy
Simulation Results
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.