Abstract

Abstract Red-emitting phosphors composed of Mn4+-activated fluorides have attracted considerable interest for their applications in warm white light-emitting diodes (WLEDs). However, in addition to moisture instability, the unsatisfactory thermal stability of these phosphors limits their industrial applications. In this study, a novel red phosphor of CsMoO2F3:Mn4+ was synthesized via simple coprecipitation. This red phosphor exhibits an orthorhombic structure with a bandgap of ~3.43 eV. The Mn4+ ions occupy Mo6+ sites at the centers of [MoO2F4]2− octahedrons. This phosphor shows narrow emission around ~633 nm excited by 450 nm blue-chip with high color purity of 99.58%. Satisfactorily, this phosphor exhibits excellent thermal stability and a strong negative-thermal-quenching. The total PL intensity of CsMoO2F3:3.88%Mn4+ phosphor at 275 K strengthens to ~540% relative to that at 25 K, and its relative emission intensity preserves about 129.3% when the temperature rises from room temperature to 423 K (150 ℃). It also shows admirable color stability with a slight chromaticity shift (ΔE) of only ~ 33.9 × 10 - 3 in the temperature region from 298 to 473 K. Furthermore, a warm WLED was fabricated by the mixture of red-emitting CsMoO2F3:3.88%Mn4+ and the yellow-emitting YAG:Ce3+ phosphors with a blue-emitting InGaN LED chip. The device exhibits low correlated color temperature (3983 K) and high color-rendering index (Ra = 81.3). With the increasing drive current from 20 mA to 120 mA, the chromaticity coordinate variation (CCV) is only (−0.0163, 0.0202). All these results indicate that the CsMoO2F3:Mn4+ phosphor holds tremendous potential for practical applications in high-power lighting and display with high-performance WLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call