Abstract
A Helly-type theorem for diameter provides a bound on the diameter of the intersection of a finite family of convex sets in $\mathbb{R}^d$ given some information on the diameter of the intersection of all sufficiently small subfamilies. We prove fractional and colorful versions of a long-standing conjecture by Bárány, Katchalski, and Pach. We also show that a Minkowski norm admits an exact Helly-type theorem for diameter if and only if its unit ball is a polytope and prove a colorful version for those that do. Finally, we prove Helly-type theorems for the property of “containing $k$ colinear integer points.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.