Abstract
We present a joint estimator of the time of arrival (TOA) and angle of arrival (AOA) for impulse radio ultrawideband (UWB) systems in which an antenna array is employed at the receiver. The proposed method consists of two steps: 1) preliminary estimation of the TOA and the average power delay profile (APDP) using energy-based threshold crossing and log-domain least-squares fitting, respectively; and 2) joint TOA refinement and AOA estimation by local 2-D maximization of a log-likelihood function (LLF) that employs the preliminary estimates from the first step. The derivation of the LLF relies on an original formulation in which the superposition of images from secondary paths is modeled as a Gaussian random process, whose second-order statistical properties are characterized by a wideband space-time correlation function. In addition to the APDP, this function incorporates a special gating mechanism to represent the onset of the secondary paths, thereby leading to a novel form of the LLF. Closed-form expressions for the Cramer-Rao bound on the variance of the TOA and AOA estimators are also derived, which formally take into account pulse overlap through this gating mechanism. In simulation experiments based on multipath UWB channel models featuring both diffuse and directional image fields, our approach exhibits superior performance to that of a competing scheme from the recent literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.