Abstract

Trace element supplementation to the freshwater environment can influence the plankton density and species diversity, contributing to the nutrition of aquaculture species, especially during the juvenile stage. An experiment was conducted under laboratory conditions to evaluate the effects of supplementing different mixtures of manganese, silica and phosphorus on the plankton density and species diversity and their impact on cultured juvenile marron (Cherax cainii, Austin and Ryan, 2002). Manganese, silica and phosphorus in concentrations of 0.0024, 0.41, 0.05 mg*L-1; 0.0041, 0.82, 0.12 mg*L-1; and 0.0058, 1.26, 0.25 mg*L-1 respectively termed as low, medium and high were supplemented to tank water containing a phytoplankton density of 3.77 ± 0.16 × 106 cells*L-1 and 292.9 ± 17.6 individuals*L-1 of zooplankton, and plankton growth was observed every 24 h for 6 days. Afterwards, a 3-month trial was conducted studying the effects of these trace element concentrations and resulting plankton densities on marron growth, survival, moulting, gut microbiota and health indices. Silica supplementation at high concentration increased the diatom abundance, silica and phosphorus supplementation at higher concentration that resulted in a significant increase in plankton density and species diversity, leading to improved marron health indices than the control and the tanks receiving a low concentration. Marron-specific growth rate, weight gain and dissolved copper concentration in haemolymph were significantly higher in tanks with higher supplementation and higher plankton density. Marron survival, moult interval and total haemocyte count were not affected by the supplementation. Marron gut microbiota at higher trace element concentration supplementation showed a significant increase in abundance of phosphate solubilizing bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call