Abstract
ObjectivesThe mixture-of-experts (ME) network uses a modular type of neural network architecture optimized for supervised learning. This model has been applied to a variety of areas related to pattern classification and regression. In this research, we applied a ME model to classify hidden subgroups and test its significance by measuring the stiffness of the liver as associated with the development of liver cirrhosis.MethodsThe data used in this study was based on transient elastography (Fibroscan) by Kim et al. We enrolled 228 HBsAg-positive patients whose liver stiffness was measured by the Fibroscan system during six months. Statistical analysis was performed by R-2.13.0.ResultsA classical logistic regression model together with an expert model was used to describe and classify hidden subgroups. The performance of the proposed model was evaluated in terms of the classification accuracy, and the results confirmed that the proposed ME model has some potential in detecting liver cirrhosis.ConclusionsThis method can be used as an important diagnostic decision support mechanism to assist physicians in the diagnosis of liver cirrhosis in patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.