Abstract
SummaryThe spectral density function plays a key role in fitting the tail of multivariate extre-mal data and so in estimating probabilities of rare events. This function satisfies moment con-straints but unlike the univariate extreme value distributions has no simple parametric form. Parameterized subfamilies of spectral densities have been suggested for use in applications, and non-parametric estimation procedures have been proposed, but semiparametric models for multivariate extremes have hitherto received little attention. We show that mixtures of Dirichlet distributions satisfying the moment constraints are weakly dense in the class of all non-parametric spectral densities, and discuss frequentist and Bayesian inference in this class based on the EM algorithm and reversible jump Markov chain Monte Carlo simulation. We illustrate the ideas using simulated and real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.