Abstract

Considering the time-delayed mixing model of the underdetermined blind source separation problem, we propose a novel mixing matrix estimation algorithm in this paper. First, we introduce the short-time Fourier transform (STFT) to transform the mixed signals from the time domain to the time–frequency domain. Second, a neoteric transformation matrix is addressed to construct the linear clustering property of STFT coefficients. Then, a preeminent detection algorithm is raised to identify the single source points. After eliminating the low-energy points and outliers in the time–frequency domain, a potential function of clustering approach is put forward to cluster the single source points and obtain the clustering centers. Finally, the mixing matrix can be estimated through the derivation and calculation. The experimental results validate that the proposed algorithm not only accurately estimates the mixing matrix for the time-delayed mixing model of the underdetermined blind source separation problem but also has certain universality for different array structures. Therefore, both the effectiveness and superiority of the proposed algorithm have been verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.