Abstract
In this paper we present a memristive neuromorphic system for higher power and area efficiency. The system is based on a mixed signal approach considering the digital nature of the peripheral and control logics and the integration being analog. So, the system is connected digitally outside but the core is purely analog. This mixed signal approach provides the advantage of implementing neural networks with spiking events in a synchronous way. Moreover, the use of nano-sclae memristive device saves the area and power of the system and some considerations about the the device have also been proposed in the paper to make the system more energy efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.