Abstract

Frequency domain techniques, like harmonic balance and describing function, are classical methods for studying and designing electronic oscillators and nonlinear microwave circuits. In most applications spectral techniques have been used for determining the steady-state behavior of nonlinear circuits that exhibit a single periodic attractor. On the other hand, the global dynamics of nonlinear networks and systems is usually investigated through time-domain techniques, that require to introduce rather complex and sophisticated concepts. Recently some HB based techniques have been proposed for investigating bifurcation processes in nonlinear circuits that present several attractors (the authors have considered systems that admits of a Lur’e representation). Their approach presents the advantages of providing a simple and qualitative description of the system dynamics, that can be effectively exploited for design purposes. In this manuscript we will examine a third order hysteretic oscillator, that cannot be decribed in the classical Lur’e form and we will show that its dynamics can be investigated through the joint application of the describing function technique and of a suitable time-domain method for estimating Floquet’s multipliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.