Abstract

AbstractThe high-precision global navigation satellite system (GNSS) positioning technique on smartphones has been attracting increasing interest in recent years. However, the low-cost GNSS chip and linearly polarised antenna embedded inside smartphones result in data lack and quality degradation, which hinders the high-precision GNSS positioning on smartphones. In this study, a mixed single- and dual-frequency quad-constellation precise point positioning (MSDQ-PPP) model is proposed to improve the positioning performance on smartphones by taking advantage of all available GNSS observations. Static and kinematic tests were made using a Xiaomi Mi8 smartphone to fully assess the MSDQ-PPP performance with comparisons to single-frequency PPP (SF-PPP) and dual-frequency PPP (DF-PPP) models. The static test results show that the MSDQ-PPP can reach an accuracy level of 0⋅39 m and 0⋅50 m in the horizontal and vertical directions with a convergence time of less than 10 min in most sessions. The MSDQ-PPP improves the positioning accuracy by 53% and 31% over the DF-PPP in the horizontal and vertical directions, respectively. In contrast to the SF-PPP, the positioning accuracy and convergence time improvement can reach 62% and 90% in the horizontal direction, respectively. In the kinematic test, the MSDQ-PPP achieves an accuracy of 0⋅7 m and 1⋅5 m in the horizontal and vertical directions, respectively. The accuracy improvement rates reach 78% and 76% over the DF-PPP, and 13% and 38% over the SF-PPP, respectively. Both static and kinematic MSDQ-PPP tests indicate significantly enhanced positioning performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.