Abstract
Mixed-effects logistic regression models are described for analysis of longitudinal ordinal outcomes, where observations are observed clustered within subjects. Random effects are included in the model to account for the correlation of the clustered observations. Typically, the error variance and the variance of the random effects are considered to be homogeneous. These variance terms characterize the within-subjects (i.e., error variance) and between-subjects (i.e., random-effects variance) variation in the data. In this article, we describe how covariates can influence these variances, and also extend the standard logistic mixed model by adding a subject-level random effect to the within-subject variance specification. This permits subjects to have influence on the mean, or location, and variability, or (square of the) scale, of their responses. Additionally, we allow the random effects to be correlated. We illustrate application of these models for ordinal data using Ecological Momentary Assessment (EMA) data, or intensive longitudinal data, from an adolescent smoking study. These mixed-effects ordinal location scale models have useful applications in mental health research where outcomes are often ordinal and there is interest in subject heterogeneity, both between- and within-subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.