Abstract

A mixed-mode cellular array processor is presented in which the processing units (PUs) are coupled with programmable polynomial (linear, quadratic, and cubic) first neighborhood feedback terms. It combines analog and digital processing so that the couplings and the polynomial terms are implemented with analog blocks whereas the integrator is digital, and analog-to-digital and digital-to-analog converters are used to interface between them. A 10-mm/sup 2/, 1.027 million transistor cellular array processor with 2/spl times/72 PUs and 36 layers of memory in each was manufactured using a 0.25-/spl mu/m digital CMOS process. The array processor can perform gray scale Heun's integration of spatial convolutions with linear, quadratic, and cubic activation functions for a 72/spl times/72 data while keeping all input-output operations during processing local. One complete Heun's iteration round takes 166.4 /spl mu/s and the power consumption during processing is 192 mW. Experimental results of statistical variations in the multipliers and polynomial circuits are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.