Abstract

In a previous article [J. Comp. Phys.357 (2018) 282–304] [4], the mixed mimetic spectral element method was used to solve the rotating shallow water equations in an idealized geometry. Here the method is extended to a smoothly varying, non-affine, cubed sphere geometry. The differential operators are encoded topologically via incidence matrices due to the use of spectral element edge functions to construct tensor product solution spaces in H(rot), H(div) and L2. These incidence matrices commute with respect to the metric terms in order to ensure that the mimetic properties are preserved independent of the geometry. This ensures conservation of mass, vorticity and energy for the rotating shallow water equations using inexact quadrature on the cubed sphere. The spectral convergence of errors are similarly preserved on the cubed sphere, with the generalized Piola transformation used to construct the metric terms for the physical field quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.