Abstract

We present a primal---dual algorithm for solving a constrained optimization problem. This method is based on a Newtonian method applied to a sequence of perturbed KKT systems. These systems follow from a reformulation of the initial problem under the form of a sequence of penalized problems, by introducing an augmented Lagrangian for handling the equality constraints and a log-barrier penalty for the inequalities. We detail the updating rules for monitoring the different parameters (Lagrange multiplier estimate, quadratic penalty and log-barrier parameter), in order to get strong global convergence properties. We show that one advantage of this approach is that it introduces a natural regularization of the linear system to solve at each iteration, for the solution of a problem with a rank deficient Jacobian of constraints. The numerical experiments show the good practical performances of the proposed method especially for degenerate problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call