Abstract
This paper deals with the cyclic robotic flowshop scheduling problem with time window constraints, where parts are processed successively on multiple machines with upper and lower bounds on processing times and the transportation of parts among the machines is executed by a robot. In contrast with most previous studies, we consider the multi-cyclic scheduling problem in which two or more identical parts enter and leave the robotic flowshop during each cycle. We present the first mixed integer programming (MIP) model for the multi-cyclic robotic flowshop scheduling problem based on the description and analysis of the problem. We solve the model using commercial software CPLEX. Computational experiment on benchmark and randomly generated instances indicates that the proposed MIP approach can effectively solve real-life scheduling problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.