Abstract

Models representing batch plants, especially flowshop facilities where all the products require the same processing sequence, have received much attention in the last decades. In particular, plant design and production scheduling have been addressed as disconnected problems due to the tremendous combinatory complexity associated to their simultaneous optimization. This paper develops a model for both design and scheduling of flowshop batch plants considering mixed product campaign and parallel unit duplication. Thus, a realistic formulation is attained, where industrial and commercial aspects are jointly taken into account. The proposed approach is formulated as a Mixed Integer Linear Programming model that determines the number of units per stages, unit and batch sizes and batch sequencing in each unit in order to fulfill the demand requirements at minimum investment cost. A set of novel constraints is proposed where the number of batches of each product in the campaign is an optimization variable. The approach performance is evaluated through several numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.