Abstract

Stimulated reservoir volume (SRV) with large fracture networks can be generated near hydraulic fractured vertical wells (HFVWs) in tight oil reservoirs. Statistics show that natural microfractures and fracture networks stimulated by SRV were self-similar in statistical sense. Currently, various analytical models have been presented to study pressure behaviors of HFVWs in tight oil reservoirs. However, most of the existing models did not take the distribution and self-similarity of fractures into consideration. To account for stimulated characteristic and self-similarity of fractures in tight oil reservoirs, a mixed-fractal flow model was presented. In this model, there are two distinct regions, stimulated region and unstimulated region. Dual-porosity model and single porosity model were used to model stimulated and unstimulated regions, respectively. Fractal geometry is employed to describe fractal permeability and porosity relationship (FPPR) in tight oil reservoirs. Solutions for the mixed-fractal flow model were derived in the Laplace domain and were validated among range of the reservoir parameters. The pressure transient behavior and production rate derivative were used to analyze flow regimes. The type curves show that the fluid flow in HFVWs can be divided into six main flow periods. Finally, effect of fractal parameters and SRV size on flow periods were also discussed. The results show that the SRV size and fractal parameters of fracture network have great effect on the former periods and fractal parameters of matrix mainly influence the later flow periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.