Abstract

The approximation of the solution of the first boundary value problem for a strongly nonlinear second-order elliptic problem in divergence form by the mixed finite element method is considered. Existence and uniqueness of the approximation are proved and optimal error estimates in L 2 are established for both the scalar and vector functions approximated by the method. Error estimates are also derived in L q , 2 ≤ q ≤ +∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.