Abstract
We consider a mixed finite element method for a linear multivariate spline using the Laplacian penalty. Our discretisation is based on biorthogonal systems leading to a very simple and efficient finite element scheme. We also extend our approach to a nonlinear case and describe a split Bregman iteration scheme for the resulting nonlinear equations. We apply our numerical schemes to remove the mixture of Gaussian and impulsive noise for some test images.•This paper presents a method of discretising a multivariate spline using a finite element method.•The method uses a biorthogonal system to achieve an efficient finite element method.•The method is extended to cover a discretisation scheme for a nonlinear case, including an adaptation of the split Bregman method for the nonlinear case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.