Abstract
The Iowa gambling task (IGT; Bechara, Damasio, Damasio, & Anderson, 1994) was developed to simulate real-life decision making under uncertainty. The task has been widely used to examine possible neurocognitive deficits in normal and clinical populations. Busemeyer and Stout (2002) proposed the expectancy-valence (EV) model to explicitly account for individual participants' repeated choices in the IGT. Parameters of the EV model presumably measure different psychological processes that underlie performance on the task, and their values may be used to differentiate individuals across different populations. In the present article, the EV model is extended to include both fixed effects and subject-specific random effects. The mixed-effects EV model fits the nested structure of observations in the IGT naturally and provides a unified procedure for parameter estimation and comparisons among groups of populations. We illustrate the utility of the mixed-effects approach with an analysis of gender differences using a real data set. A simulation study was conducted to verify the advantages of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.