Abstract
Fast charging studies for lithium-ion batteries aim to minimize charging time while maximizing battery lifetime. Real-time optimal control problems are typically solved using empirical or simplified physical models with constraint-based model predictive control (MPC). In this article, we derive physics-based operating modes based on degradative governing equations, which are used to ensure safe use and minimal degradation during long-term cycling. The fast-charging protocols are efficiently and deterministically simulated using a mixed continuous-discrete (aka hybrid) approach to fast charging. This simultaneously solves the battery system of equations and the constraint-based control problem. The approach is evaluated using a Porous Electrode Theory-based model that includes solid-electrolyte interface (SEI) capacity fade. Three physics-based charging protocols are compared to a conventional constant current-constant voltage (CC-CV) protocol. Given identical levels of capacity fade after 500 cycles, the physics-based protocols uniformly reach a greater charge capacity compared to CC-CV after charging for 10 and 15 minutes. The computational cost of simulating physics-based charging protocols is only about 30% greater than the CC-CV method. The fast charging framework is easily extendable to other battery models, irrespective of model complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.