Abstract

In practical multiple attribute decision making (MADM) problems, the interest groups or individuals intentionally set attribute weights to achieve their own benefits. In this case, the rankings of different alternatives are changed strategically, which is called the strategic weight manipulation in MADM. Sometimes, the attribute values are given with imprecise forms. Several theories and methods have been developed to deal with uncertainty, such as probability theory, interval values, intuitionistic fuzzy sets, hesitant fuzzy sets, etc. In this paper, we study the strategic weight manipulation based on the belief degree of uncertainty theory, with uncertain attribute values obeying linear uncertain distributions. It allows the attribute values to be considered as a whole in the operation process. A series of mixed 0-1 programming models are constructed to set a strategic weight vector for a desired ranking of a particular alternative. Finally, an example based on the assessment of the performance of COVID-19 vaccines illustrates the validity of the proposed models. Comparison analysis shows that, compared to the deterministic case, it is easier to manipulate attribute weights when the attribute values obey the linear uncertain distribution. And a further comparative analysis highlights the performance of different aggregation operators in defending against the strategic manipulation, and highlights the impacts on ranking range under different belief degrees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call