Abstract

A main concern in applications of game theory is how to effectively select a Nash equilibrium, especially a pure-strategy Nash equilibrium for a finiten-person game in normal form. This selection process often requires the computation of all Nash equilibria. It is well known that determining whether a finite game has a pure-strategy Nash equilibrium is an NP-hard problem and it is difficult to solve by naive enumeration algorithms. By exploiting the properties of pure strategy and multilinear terms in the payoff functions, this paper formulates a new mixed 0-1 linear program for computing all pure-strategy Nash equilibria. To our knowledge, it is the first method to formulate a mixed 0-1 linear programming for pure-strategy Nash equilibria and it may work well for similar problems. Numerical results show that the approach is effective and this method can be easily distributed in a distributed way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.