Abstract

The efficacy of photodynamic therapy is typically reliant on the local concentration and diffusion of oxygen. Due to the hypoxic microenvironment found in solid tumors, oxygen-independent photosensitizers are in great demand for cancer therapy. We herein report an iridium(III) anthraquinone complex as a mitochondrion-localized carbon-radical initiator. Its emission is turned on under hypoxic conditions after reduction by reductase. Furthermore, its two-photon excitation properties (λex =730 nm) are highly desirable for imaging. Upon irradiation, the reduced form of the complex generates carbon radicals, leading to a loss of mitochondrial membrane potential and cell death (IC50light =2.1 μm, IC50dark =58.2 μm, PI=27.7). The efficacy of the complex as a PDT agent was also demonstrated under hypoxic conditions in vivo. To the best of our knowledge, it is the first metal-complex-based theranostic agent which can generate carbon radicals for oxygen-independent two-photon photodynamic therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call