Abstract

In situ mitochondrial oxidative stress amplification is an effective strategy to improve efficacy of cancer treatment. In this work, a tumor and mitochondria dual-targeted multifunctional nanoplatform CMS@AIPH@PDA@COTPP@FA (CAPCTF) was prepared, in which a thermally decomposable radical initiator AIPH was loaded inside the mesoporores of CuxMoySz (CMS) nanoparticles with polydopamine (PDA) covered films that were further covalently functionalized by a mitochondria-targeted CO donor (COTPP) and a directing group of folic acid (FA). The prepared CAPCTF nanoplatform selectively accumulated in cancer cells and further targeted the mitochondrial organelle where carbon monoxide (CO) and O2-independent free radicals (•OH/•R) were in situ generated upon 1064nm laser irradiation. Furthermore, the CMS nanocarrier was capable of depleting the GSH overexpressed in the tumor microenvironment (TME), thus preventing free radical scavenging. As a result, the CAPCTF nanoplatform exhibited outstanding in vitro and in vivo antitumor efficacy under hypoxic conditions. This provides an innovative strategy that combines O2-independent free radicals (•OH/•R) generation, CO delivery and GSH consumption to amplify intracellular oxidative stresses and induce mitochondrial dysfunction, thus leading to cancer cells eradication, which may have significant implications for personalized hypoxic tumor treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call