Abstract

BackgroundEcological adaptation to host taxa is thought to result in mistletoe speciation via race formation. However, historical and ecological factors could also contribute to explain genetic structuring particularly when mistletoe host races are distributed allopatrically. Using sequence data from nuclear (ITS) and chloroplast (trnL-F) DNA, we investigate the genetic differentiation of 31 Psittacanthus schiedeanus (Loranthaceae) populations across the Mesoamerican species range. We conducted phylogenetic, population and spatial genetic analyses on 274 individuals of P. schiedeanus to gain insight of the evolutionary history of these populations. Species distribution modeling, isolation with migration and Bayesian inference methods were used to infer the evolutionary transition of mistletoe invasion, in which evolutionary scenarios were compared through posterior probabilities.ResultsOur analyses revealed shallow levels of population structure with three genetic groups present across the sample area. Nine haplotypes were identified after sequencing the trnL-F intergenic spacer. These haplotypes showed phylogeographic structure, with three groups with restricted gene flow corresponding to the distribution of individuals/populations separated by habitat (cloud forest localities from San Luis Potosí to northwestern Oaxaca and Chiapas, localities with xeric vegetation in central Oaxaca, and localities with tropical deciduous forests in Chiapas), with post-glacial population expansions and potentially corresponding to post-glacial invasion types. Similarly, 44 ITS ribotypes suggest phylogeographic structure, despite the fact that most frequent ribotypes are widespread indicating effective nuclear gene flow via pollen. Gene flow estimates, a significant genetic signal of demographic expansion, and range shifts under past climatic conditions predicted by species distribution modeling suggest post-glacial invasion of P. schiedeanus mistletoes to cloud forests. However, Approximate Bayesian Computation (ABC) analyses strongly supported a scenario of simultaneous divergence among the three groups isolated recently.ConclusionsOur results provide support for the predominant role of isolation and environmental factors in driving genetic differentiation of Mesoamerican parrot-flower mistletoes. The ABC results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats. Under this scenario, climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation. Our findings add to an understanding of the role of recent isolation and colonization in shaping cloud forest communities in the region.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0648-6) contains supplementary material, which is available to authorized users.

Highlights

  • Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation

  • The Approximate Bayesian Computation (ABC) results are consistent with a scenario of post-glacial mistletoe invasion, independent of host identity, and that habitat types recently isolated P. schiedeanus populations, accumulating slight phenotypic differences among genetic groups due to recent migration across habitats

  • Climatic fluctuations throughout the Pleistocene would have altered the distribution of suitable habitat for mistletoes throughout Mesoamerica leading to variation in population continuity and isolation

Read more

Summary

Introduction

Ecological adaptation to host taxa is thought to result in mistletoe speciation via race formation. Most aerial Loranthaceae mistletoes use bird vectors for seed dispersal and, eventually, branch attachment and penetration of woody host plants [1] Given their close affinities with their dispersal vectors and the connections with and dependence on their hosts [2, 3], the mistletoe geographical ranges are directly related to the morphological and behavioral adaptations of mistletoe fruit specialists and the availability of suitable host trees. Research on mistletoe evolution has highlighted the importance of host specialization during speciation (reviewed in [5]), which can occur in three ways: (1) mistletoe co-speciation with their hosts (dispersal hypothesis), (2) mistletoe speciation by changing host specificity (host-switching hypothesis), and (3) mistletoe speciation without changes in the host (ecological hypothesis) Each of these modes of mistletoe speciation could occur following the allopatric, peripheral isolates or sympatric models of speciation [8]. There is a tendency among Psittacanthus mistletoes that infect more than one host species to infect distantly related hosts and their ranges overlap, whereas Psittacanthus species that infect closely related host species have allopatric distributions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call