Abstract

The pyruvate dehydrogenase complex (PDC) is responsible for the conversion of pyruvate into acetyl-CoA, which is used for energy conversion in cells. PDC activity is regulated by phosphorylation via kinases and phosphatases (PDK/PDP). Variants in all subunits of the PDC and in PDK3 have been reported, with varying phenotypes including lactic acidosis, neurodevelopmental delay, peripheral neuropathy, or seizures. Here, we report a de novo heterozygous missense variant in PDK1 (c.1139G > A; p.G380D) in a girl with developmental delay and early onset severe epilepsy. To investigate the role of PDK1G380D in energy metabolism and neuronal development, we used a zebrafish model. In zebrafish embryos we show a reduced number of cells with mitochondria with membrane potential, reduced movements, and a delay in neuronal development. Furthermore, we observe a reduction in the phosphorylation of PDH-E1α by PDKG380D, which suggests a disruption in the regulation of PDC activity. Finally, in patient fibroblasts, a mild reduction in the ratio of phosphorylated PDH over total PDH-E1α was detected. In summary, our findings support the notion that this aberrant PDK1 activity is the cause of clinical symptoms in the patient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.