Abstract
Empathy is crucial for our emotional experience and social interactions, and its abnormalities manifest in various psychiatric disorders. Observational fear is a useful behavioral paradigm for assessing affective empathy in rodents. However, specific genes that regulate observational fear remain unknown. Here we showed that 129S1/SvImJ mice carrying a unique missense variant in neurexin3 (Nrxn3) exhibited a profound and selective enhancement in observational fear. Using the CRISPR/Cas9 system, the arginine-to-tryptophan (R498W) change in Nrxn3 was confirmed to be the causative variant. Selective deletion of Nrxn3 in somatostatin-expressing (SST+) interneurons in the anterior cingulate cortex (ACC) markedly increased observational fear and impaired inhibitory synaptic transmission from SST+ neurons. Concordantly, optogenetic manipulation revealed that SST+ neurons in the ACC bidirectionally controlled the degree of socially transmitted fear. Together, these results provide insights into the genetic basis ofbehavioral variability and the neurophysiologicalmechanism controlling empathy in mammalian brains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.