Abstract
Primary hypomagnesemia is a heterogeneous group of disorders characterized by renal or intestinal magnesium (Mg2+) wasting, resulting in tetany, cardiac arrhythmias, and seizures. The kidney plays an essential role in maintaining blood Mg2+ levels, with a prominent function for the Mg2+-transporting channel transient receptor potential cation channel, subfamily M, member 6 (TRPM6) in the distal convoluted tubule (DCT). In the DCT, Mg2+ reabsorption is an active transport process primarily driven by the negative potential across the luminal membrane. Here, we studied a family with isolated autosomal dominant hypomagnesemia and used a positional cloning approach to identify an N255D mutation in KCNA1, a gene encoding the voltage-gated potassium (K+) channel Kv1.1. Kv1.1 was found to be expressed in the kidney, where it colocalized with TRPM6 along the luminal membrane of the DCT. Upon overexpression in a human kidney cell line, patch clamp analysis revealed that the KCNA1 N255D mutation resulted in a nonfunctional channel, with a dominant negative effect on wild-type Kv1.1 channel function. These data suggest that Kv1.1 is a renal K+ channel that establishes a favorable luminal membrane potential in DCT cells to control TRPM6-mediated Mg2+ reabsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.